Sequential data is frequently essential for deep learning. RNNs can capture dependencies across time in a variety of applications, including interpreting phrase context, assessing a series of photographs, and forecasting market prices based on historical trends. They are therefore especially well-suited for tasks involving sequential patterns and context.
Sequential data is frequently essential for deep learning. RNNs can capture dependencies across time in a variety of applications, including interpreting phrase context, assessing a series of photographs, and forecasting market prices based on historical trends. They are therefore especially well-suited for tasks involving sequential patterns and context.